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Introduction

Why are there so many Cohen-Macaulay rings
which are not Gorenstein?
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Example 1.1 (Determinantal rings)

Let S = k[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n ] (2 ≤ m ≤ n) be the polynomial
ring over a field k and put

R = S/It(X )

where 2 ≤ t ≤ m, It(X ) is the ideal of S generated by t × t-minors of
X = [Xij ].

Then
R is a Gorenstein ring ⇐⇒ m = n.
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Aim of this research

Find a new class of Cohen-Macaulay rings which may not be
Gorenstein, but sufficiently good next to Gorenstein rings.

Almost Gorenstein rings
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History of almost Gorenstein rings

[Barucci-Fröberg, 1997]

· · · one-dimensional analytically unramified local rings

[Goto-Matsuoka-Phuong, 2013]

· · · one-dimensional Cohen-Macaulay local rings

[Goto-Takahashi-T, 2015]

· · · higher-dimensional Cohen-Macaulay local/graded rings
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Survey on one-dimensional almost Gorenstein local rings

Setting 2.1

(R,m) a CM local ring with dimR = 1

|R/m| = ∞

∃ KR the canonical module of R

∃ I ⊊ R an ideal of R s.t. I ∼= KR

Therefore, ∃ e0(I ) > 0, e1(I ) ∈ Z s.t.

ℓR(R/I
n+1) = e0(I )

(
n + 1

1

)
− e1(I )

for ∀n ≫ 0.
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Set r(R) = ℓR(Ext
1
R(R/m,R)).

Definition 2.2 (Goto-Matsuoka-Phuong)

We say that R is an almost Gorenstein local ring, if e1(I ) ≤ r(R).

Suppose that I contains a parameter ideal Q = (a) as a reduction, i.e.

I r+1 = QI r for ∃ r ≥ 0.

We set

K =
I

a
=

{x

a
| x ∈ I

}
⊆ Q(R).

Then K is a fractional ideal of R s.t.

R ⊆ K ⊆ R and K ∼= KR .
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Theorem 2.3 (Goto-Matsuoka-Phuong)

R is an almost Gorenstein local ring ⇐⇒ mK ⊆ R (i.e. mI ⊆ Q)

Example 2.4

(1) k[[t3, t4, t5]]

(2) k[[te , te+1, . . . , t2e−3, t2e−1]] (e ≥ 4)

(3) k[[X ,Y ,Z ]]/(X ,Y ) ∩ (Y ,Z ) ∩ (Z ,X )

(4) k[[X ,Y ,Z ,U,V ,W ]]/I , where

I = (X 3 − Z 2,Y 2 − ZX ) + (U,V ,W )2

+ (YU − XV ,ZU − XW ,ZU − YV ,ZV − YW ,X 2U − ZW )
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Corollary 2.5 (Goto-Matsuoka-Phuong)

Suppose that R is complete and contains a field of ch p > 0. If R is
F-pure, then R is an almost Gorenstein local ring.
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Almost Gorenstein local rings of higher dimension

Setting 2.6

(R,m) a CM local ring with d = dimR

|R/m| = ∞

∃ KR the canonical module of R

Definition 2.7 (Goto-Takahashi-T)

We say that R is an almost Gorenstein local ring (abbr. AGL ring), if ∃ an
exact sequence

0 → R → KR → C → 0

of R-modules s.t. µR(C ) = e0m(C ).
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Look at an exact sequence

0 → R → KR → C → 0

of R-modules. If C ̸= (0), then C is CM with dimR C = d − 1.

Set R1 = R/[(0) :R C ].

Then ∃ f1, f2, . . . , fd−1 ∈ m s.t. (f1, f2, . . . , fd−1)R1 forms a minimal
reduction of m1 = mR1. Therefore

e0m(C ) = e0m1
(C ) = ℓR(C/(f1, f2, . . . , fd−1)C ) ≥ ℓR(C/mC ) = µR(C ).

Thus
µR(C ) = e0m(C ) ⇐⇒ mC = (f1, f2, . . . , fd−1)C .

Hence, C is a maximally generated maximal Cohen-Macaulay R1-module
in the sense of B. Ulrich, which is called an Ulrich R-module.
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Definition 2.8

We say that R is an AGL ring, if ∃ an exact sequence

0 → R → KR → C → 0

of R-modules s.t. either C = (0) or C ̸= (0) and C is an Ulrich R-module.

Remark 2.9

Suppose that d = 1. Then TFAE.

(1) R is an AGL ring in the sense of Definition 2.8.

(2) R is an AGL ring in the sense of [GMP, Definition 3.1].

Naoki Taniguchi (Waseda University) Almost Gorenstein rings January 17, 2019 12 / 40



Introduction AGL rings Semi-Gorenstein rings AGG rings Two-dimensional rational singularities Further results References

Theorem 2.10 (NZD characterization)

(1) If R is a non-Gorenstein AGL ring of dimension d > 1, then so is
R/(f ) for genaral NZD f ∈ m \m2.

(2) Let f ∈ m be a NZD on R. If R/(f ) is an AGL ring, then so is R.
When this is the case, f /∈ m2, if R is not Gorenstein.

Corollary 2.11

Suppose that d > 0. If R/(f ) is an AGL ring for every NZD f ∈ m, then
R is Gorenstein.
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Example 2.12

Let S = k[[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n ]] (2 ≤ m ≤ n) and k an infinite
field. We put

R = S/It(X )

where 2 ≤ t ≤ m, X = [Xij ].

Then

R is an AGL ring ⇐⇒ m = n, or m ̸= n, t = m = 2
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Proof

(⇐) Let X =
(

X1 X2 ··· Xn
Y1 Y2 ··· Yn

)
and put R = S/I2(X ) (n ≥ 2). Then R is a

CM ring with dimR = n + 1 and r(R) = n − 1.

Notice that {Xi −Yi−1}1≤i≤n (here Y0 = Yn) forms a regular sequence on
R and we get

R/(Xi − Yi−1 | 1 ≤ i ≤ n)R ∼= k[[X1,X2, . . . ,Xn]]/I2(N) = A

where N =
(

X1 X2 ··· Xn−1 Xn

X2 X3 ··· Xn X1

)
. Then A is a CM ring with dimA = 1 s.t.

n2 = x1n and KA
∼= (x1, x2, . . . , xn−1).

Thus A is an AGL ring, since n(x1, x2, . . . , xn−1) ⊆ (x1). Hence, R is AGL.

(⇒) Use the minimal free resolution.
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Theorem 2.13

Let (S , n) be a Noetherian local ring, φ : R → S a flat local
homomorphism. Suppose that S/mS is a RLR. Then

R is an AGL ring ⇐⇒ S is an AGL ring.

Therefore

R is an AGL ring ⇐⇒ R[[X1,X2, . . . ,Xn]] is an AGL ring.

R is an AGL ring ⇐⇒ R̂ is an AGL ring.

Naoki Taniguchi (Waseda University) Almost Gorenstein rings January 17, 2019 16 / 40



Introduction AGL rings Semi-Gorenstein rings AGG rings Two-dimensional rational singularities Further results References

Theorem 2.14

Suppose that d > 0. Let p ∈ SpecR and assume that R/p is a RLR of
dimension d − 1. Then TFAE.

(1) R ⋉ p is an AGL ring.

(2) R is an AGL ring.

Corollary 2.15 (Goto-Matsuoka-Phuong, Goto-Isobe-T)

Suppose that d = 1. Then TFAE.

(1) R ⋉m is an AGL ring.

(2) R is an AGL ring.

(3) R ×R/m R is an AGL ring.
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Example 2.16

Let k be an infinite field. We consider

A1 = k[[X ,Y ,Z ,U,V ,W ]]/I , A2 = k[[X ,Y ,Z ,U,V ,W ]]/J,

where

I = (X 3 − Z 2,Y 2 − ZX ) + (U,V ,W )2

+ (YU − XV ,ZU − XW ,ZU − YV ,ZV − YW ,X 2U − ZW )

J = (X 3 − Z 2,Y 2 − ZX ) + (U3 −W 2,V 2 − UW )

+ (X ,Y ,Z )(U,V ,W ).

Then

A1
∼= k[[t4, t5, t6]]⋉ (t4, t5, t6), A2

∼= k[[t4, t5, t6]]×k k[[t
4, t5, t6]]

and hence A1,A2 are AGL rings.
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Theorem 2.17

Let (R,m) be a CM complete local ring with dimR = 1 and assume that
R/m is algebraically closed of characteristic 0. Suppose that R has finite
CM representation type. Then R is an AGL ring.
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Theorem 2.18 (Goto)

Suppose that R is a non-Gorenstein AGL ring with dimR ≥ 1. Let M be a
finitely generated R-module. If

ExtiR(M,R) = (0)

for ∀i ≫ 0, then pdR M < ∞.

Corollary 2.19

Suppose that R is an AGL ring with dimR ≥ 1. If R is not a Gorenstein
ring, then R is G-regular, i.e.

GdimR M = pdR M

for every finitely generated R-module M.
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Semi-Gorenstein local rings

In this section we maintain Setting 2.6.

Let F = {In}n∈Z be a filtration of ideals of R s.t. I0 = R, I1 ̸= R.

We consider the R-algebras

R =
∑
n≥0

Int
n ⊆ R[t], R′ =

∑
n∈Z

Int
n ⊆ R[t, t−1], and G = R′/t−1R′

associated to F , where t is an indeterminate.

Let N denote the graded maximal ideal of R′.
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Theorem 3.1

Suppose that R is a Noetherian ring. If GN is an AGL ring and
r(GN) ≤ 2, then R is an AGL ring.

Proof.

We may assume r(GN) = 2. Since R′
N is an AGL ring with r(R′

N) = 2,
we have

0 → R′
N → K(R′

N) → C → 0

where C ∼= a RLR of dim d .

Let p = mR[t, t−1] and set P = p ∩R′. Then P ⊆ N, so that R[t, t−1]p
is an AGL ring, because

R[t, t−1]p = R′
P = (R′

N)PR′
N
.

Hence, R is an AGL ring, since R → R[t, t−1] → R[t, t−1]p is flat.
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Example 3.2 (Barucci-Dobbs-Fontana)

Let R = k[[x4, x6 + x7, x10]] ⊆ V , where V = k[[x ]] and k is an infinite
field of ch k ̸= 2. Let

H = {v(a) | 0 ̸= a ∈ R} the value semigroup of R

F = {(xV )n ∩ R}n∈Z the filtration of ideals of R.

Then

(1) H = ⟨4, 6, 11, 13⟩.

(2) G ∼= k[x4, x6, x11, x13] and GN is an AGL ring with r(GN) = 3, so
that R′

N is AGL.

(3) R is NOT an AGL ring and r(R) = 2.

Therefore, (R′
N)PR′

N
is NOT an AGL ring.
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Definition 3.3

We say that R is a semi-Gorenstein local ring, if R is an AGL ring which
possesses an exact sequence

0 → R → KR → C → 0

s.t. either C = (0), or C is an Ulrich R-module and C = ⊕ℓ
i=1Ci for some

cyclic R-submodule Ci of C .
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Therefore, if C ̸= (0), then

Ci
∼= R/pi for ∃ pi ∈ SpecR

such that R/pi is a RLR of dimension d − 1.

Notice that

AGL ring with dimR = 1

AGL ring with r(R) ≤ 2

are semi-Gorenstein rings.

Proposition 3.4

Let R be a semi-Gorenstein local ring. Then Rp is semi-Gorenstein for
∀p ∈ SpecR.
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Theorem 3.5

Let (S , n) be a RLR, a ⊊ S an ideal of S, n = htS a. Let R = S/a. Then TFAE.

(1) R is a semi-Gorenstein local ring, but not Gorenstein.

(2) R is CM, n ≥ 2, r = r(R) ≥ 2, and R has a minimal S-free resolution:

0 → Fn = S r M→ Fn−1 = Sq → Fn−2 → · · · → F1 → F0 = S → R → 0

where

tM =


y21y22 · · · y2ℓ y31y32 · · · y3ℓ · · · yr1yr2 · · · yrℓ z1z2 · · · zm
x21x22 · · · x2ℓ 0 0 0 0

0 x31x32 · · · x3ℓ 0 0 0
...

...
. . .

...
...

0 0 0 xr1xr2 · · · xrℓ 0

 ,

ℓ = n + 1, q ≥ (r − 1)ℓ, m = q − (r − 1)ℓ, and xi1, xi2, . . . , xiℓ is
a part of a regular system of parameters of S for 2 ≤ ∀i ≤ r .
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When this is the case

a = (z1, z2, . . . , zm) +
r∑

i=2

I2 (
yi1 yi2 ··· yiℓ
xi1 yi2 ··· xiℓ ) .
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Example 3.6

Let φ : S = k[[X ,Y ,Z ,W ]] −→ R = k[[t5, t6, t7, t9]] be the k-algebra
map defined by

φ(X ) = t5, φ(Y ) = t6, φ(Z ) = t7 and φ(W ) = t9.

Then
0 → S2 M→ S6 → S5 → S → R → 0,

where
tM =

(
W X 2 XY YZ Y 2−XZ Z2−XW
X Y Z W 0 0

)
.

Hence R is semi-Gorenstein with r(R) = 2 and

Kerφ = (Y 2 − XZ ,Z 2 − XW ) + I2
(
W X 2 XY YZ
X Y Z W

)
.
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Almost Gorenstein graded rings

Setting 4.1

R =
⊕

n≥0 Rn a CM graded ring with d = dimR

(R0,m) a Noetherian local ring

|R0/m| = ∞

∃ KR the graded canonical module of R

M = mR + R+

a = a(R) := −min{n ∈ Z | [KR ]n ̸= (0)}
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Definition 4.2

We say that R is an almost Gorenstein graded ring (abbr. AGG ring), if ∃
an exact sequence

0 → R → KR(−a) → C → 0

of graded R-modules s.t. µR(C ) = e0M(C ).

Notice that

R is an AGG ring =⇒ RM is an AGL ring.

The converse is not true in general.

Naoki Taniguchi (Waseda University) Almost Gorenstein rings January 17, 2019 30 / 40



Introduction AGL rings Semi-Gorenstein rings AGG rings Two-dimensional rational singularities Further results References

Theorem 4.3

Let R = k[R1] be a CM homogeneous ring with d = dimR ≥ 1. Suppose
that |k | = ∞ and R is not a Gorenstein ring. Then TFAE.

(1) R is an AGG ring and level.

(2) Q(R) is a Gorenstein ring and a(R) = 1− d.
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Example 4.4

Let S = k[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n ] (2 ≤ m ≤ n) and k an infinite field.
We put

R = S/It(X )

where 2 ≤ t ≤ m, X = [Xij ]. Then

R is an AGG ring ⇐⇒ m = n, or m ̸= n and t = m = 2.

Example 4.5

Let R = k[X1,X2, . . . ,Xd ] (d ≥ 1), k an infinite field, and 1 ≤ n ∈ Z.

R(n) = k[Rn] is an AGG ring, if d ≤ 2.

Suppose that d ≥ 3. Then

R(n) is an AGG ring ⇐⇒ n | d , or d = 3 and n = 2.
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Example 4.6

Look at the simplicial complex ∆ :

Then R = k[∆] is an AGG ring with dimR = 3.
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Theorem 4.7

Let (A,m) be a CM local ring with |A/m| = ∞, possessing the canonical
module KA. Let I be an m-primary ideal of A. If G = grI (A) is an AGG
ring and r(G ) = r(A), then A is an AGL ring.
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Two-dimensional rational singularities

Setting 5.1

(R,m) a CM local ring with d = dimR

|R/m| = ∞

∃ KR the canonical module of R

v(R) = µR(m), e(R) = e0m(R)

G = grm(R) =
⊕

n≥0m
n/mn+1
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Theorem 5.2

(1) Suppose that G is an AGG ring and level. Then R is an AGL ring.

(2) Suppose that R is an AGL ring and v(R) = e(R) + d − 1. Then G is
an AGG ring and level.

Corollary 5.3

Suppose that v(R) = e(R) + d − 1. Then TFAE.

(1) R is an AGL ring.

(2) G is an AGG ring.

(3) Q(G ) is a Gorenstein ring.
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Corollary 5.4

Suppose that v(R) = e(R) + d − 1 and R is a normal ring. If m is a
normal ideal, then R is an AGL ring.

Corollary 5.5

Every two-dimensional rational singularity is an AGL ring.

Corollary 5.6

Every two-dimensional CM complete local ring R of finite CM
representation type is an AGL ring, provided R contains a field of
characteristic 0.

Naoki Taniguchi (Waseda University) Almost Gorenstein rings January 17, 2019 37 / 40



Introduction AGL rings Semi-Gorenstein rings AGG rings Two-dimensional rational singularities Further results References

Further results

[Goto-Matsuoka-T-Yoshida, Goto-Rahimi-T-Truong]

· · · Almost Gorenstein Rees algebras

[Goto-Takahashi-T]

· · · Almost Gorenstein rings and Ulrich ideals

[Celikbas-Celikbas-Goto-T]

· · · Almost Gorenstein Arf rings

[Higashitani]

· · · Almost Gorenstein homogeneous rings and h-vectors

[Miyazaki]

· · · Almost Gorenstein Hibi rings

[Matsuoka-Murai]

· · · Almost Gorenstein Stanley-Reisner rings
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Thank you so much for your attention.
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